MathVantage	Algebra	I - Exam 2	Exam Number: 013	
	PART 1:	QUESTIONS		
Name:	Age	: Id:	Course:	
Algebra I - Exam	2	Lesson: 4-6		
Instructions:		Exam Strategies to	get the best performance:	
Please begin by printing your Name, your	Age,	• Spend 5 minutes reading your exam. Use this time		
your Student Id, and your Course Name i	n the box	to classify each Question in (E) Easy, (M) Medium,		
above and in the box on the solution sheet	t.	and (D) Difficult.		
• You have 90 minutes (class period) for thi	s exam.	• Be confident by solving the easy questions first then the medium questions.		
• You can not use any calculator, computer,				
cellphone, or other assistance device on the	nis exam.	• Be sure to check each	n solution. In average, you	
However, you can set our flag to ask perm	nission to	only need 30 seconds to test it. (Use good sense).		

- Don't waste too much time on a question even if you know how to solve it. Instead, skip the question and put a circle around the problem number to work on it later. In average, the easy and medium questions take up half of the exam time.
- Solving the all of the easy and medium question will already guarantee a minimum grade. Now, you are much more confident and motivated to solve the difficult or skipped questions.
- Be patient and try not to leave the exam early. Use the remaining time to double check your solutions.

• Set up your flag if you have a question.

are not allowed in your notes).

some points).

consult your own one two-sided-sheet notes at any

formulas, properties, and procedures, but questions

and their solutions from books or previous exams

• Each multiple-choice question is worth 5 points

and each extra essay-question is worth from 0 to 5

points. (Even a simple related formula can worth

point during the exam (You can write concepts,

• Relax and use strategies to improve your performance.

1. Solve:

x - 2(5 - x) = -4

a) 1

- b) 2
- c) 3
- d) 4
- e) There is no solution.

Solution: b

x - 2(5 - x) = -4 x - 10 + 2x = -4 3x = -4 + 10 3x = 6 $x = \frac{6}{3}$ x = 2

2. Solve:

- $\frac{5x-4}{3} = \frac{10-3x}{2}$ a) 1 b) 2 c) 3
- c) 5 d) 4
- e) There is no solution.

Solution: b

 $\frac{5x-4}{3} = \frac{10-3x}{2}$ 2(5x-4) = 3(10-3x) 10x-8 = 30-9x 10x+9x = 30+8 19x = 38 $x = \frac{38}{19}$ x = 2

3. George wants to work 5 hours per day in a barber shop for \$9 an hour. A total of 25% of his salary goes towards his dog, Philipe. How many days must he work to save \$270 for a new pair of scissors?

- a) 2 days
- b) 4 days
- c) 6 days
- d) 8 days
- e) He can't afford the new pair of scissors.

x = number of hours. d = number of days. If 25% of his salary is deducted then he makes only 75% or $\frac{3}{4}$ of the total amount paid. Equation: $\frac{3}{4}$ * Total amount paid = 270 $9x * \frac{3}{4} = 270$ $9x = \frac{270}{\frac{3}{4}}$ $9x = \frac{270}{\frac{3}{1}} * \frac{4}{3}$ $9x = \frac{90}{1} * \frac{4}{1}$ 9x = 360 $x = \frac{360}{9}$ x = 40 hours $d = \frac{x}{5}$

d = 8 days

4. An exam of 60 questions has the following rules:

- 10 points for each correct answer.
- -3 points for each incorrect answer.

How many correct answers do you need to get 340 points on the exam?

- a) 10 correct answers.
 b) 20 correct answers.
 c) 30 correct answers.
 d) 40 correct answers.
 e) None of the above.
 - , ,

Solution: d

x = number of correct answers. 10x - 3(60 - x) = 340 10x - 180 + 3x = 340 13x = 520x = 40 correct answers 5. Solve:

$$\frac{x-2}{x+1} - \frac{x-3}{x-1} = \frac{2}{x^2-1}; x \in \mathbb{R}$$

a) 0
b) 1
c) 2
d) 3
e) There is no solution.

Solution: d

Existence Condition: $x \neq \pm 1$.

 $\frac{(x-2)(x-1) - (x-3)(x+1)}{(x+1)(x-1)} - \frac{x-3}{x-1} = \frac{2}{(x+1)(x-1)}$ $\frac{x^2 - x - 2x + 2 - x^2 - x + 3x + 3 = 2}{-x + 5 = 2}$ -x = 2 - 5-x = -3 $x = \frac{-3}{-1}$ x = 3

6. Solve:

$$\frac{x}{x-2} + 2x = \frac{2x^2 - 6}{x-2}; x \in \mathbb{R}$$

- a) There are infinite solutions.
- b) There are only one solution
- c) There is no solution..
- d) There are two solutions.
- e) There are three solutions.

Solution: c

Existence Condition:
$$x \neq 2$$

 $x + 2x(x - 2) = 2x^2 - 6$
 $x + 2x^2 - 4x = 2x^2 - 6$
 $-3x = -6$
 $x = \frac{-6}{-3}$
 $x = 2$ (Discarded).

Thus, there is no solution.

7. Let x₁ and x₂ be the solutions of the equation, $ax^2 + bx + c = 0$; $a \neq 0$. I. $x_1 \cdot x_2 = \frac{b}{a}$

II.
$$x_1 \cdot x_2 = \frac{c}{a}$$

III. $ax^2 + bx + c = a(x + x_1)(x + x_2)$

Then:

a) Only I is true.b) Only II is true.c) Only III is true.d) Only I and II are true.e) I,II, and III are true.

Solution: b

- Direct application of formulas. I - False, $x_1 + x_2 = \frac{-b}{a}$ II - True. III - False, $ax^2 + bx + c = a(x - x_1)(x - x_2)$
- 8. $ax^2 + bx + c = 0$ where *a*, *b*, and *c* are real constants with $a \neq 0$ and *x* is a variable such that $x \in \mathbb{R}$.
- I. This equation could have no solution.
- II. This equation could have three distinct solutions.
- III. This equation could have two distinct solutions.
- IV. This equation could have one distinct solution.

a) I is false.

- b) II is false.
- c) III is false.
- d) IV is false.
- e) None of the above.

Solution: b

The Quadratic formula is
$$x = \frac{-b \pm \sqrt{\Delta}}{2a}$$
 where Δ

 $= b^2 - 4ac$ and $a \neq 0$.

If $\Delta < 0 \Rightarrow$ the equation has no solution. If $\Delta = 0 \Rightarrow$ the equation has one distinct

solution. $\Delta = 0 \Rightarrow$ the equation has one distinct

If $\Delta > 0 \Rightarrow$ the equation has two distinct solutions.

This makes II the only one that is incorrect.

9. The solutions of the equation, $x^2 - 3x + 2 = 0$ are:

a) $x_1 = 1$ and $x_2 = 2$ b) $x_1 = 2$ and $x_2 = 3$ c) $x_1 = 3$ and $x_2 = 4$ d) $x_1 = 4$ and $x_2 = 5$ e) None of the above.

Solution: a

$$x^{2} - 3x + 2 = 0 (a = 1, b = -3, \text{ and } c = 2)$$

$$S = \frac{-b}{a} \Rightarrow S = \frac{-(-3)}{1} \Rightarrow S = 3$$

$$P = \frac{c}{a} \Rightarrow P = \frac{2}{1} \Rightarrow P = 2$$

Quick test:

$$(+1 +2)$$
 $x_1 = 1 \text{ or } x_2 = 2$

Using Quadratic Formula:

$$\Delta = b^2 - 4ac$$

$$\Delta = (-3)^2 - 4(1)(2)$$

$$\Delta = 9 - 8$$

$$\Delta = 1$$

$$x = \frac{-b \pm \sqrt{\Delta}}{2a} ; a \neq 0$$

$$x = \frac{-(-3) \pm \sqrt{1}}{2(1)}$$

$$x = \frac{3 \pm 1}{2} \Rightarrow x_1 = 1 \text{ or } x_2 = 2$$

Note that $S = x_1 + x_2 = 3$ and $P = x_1 \cdot x_2 = 2$.

10. Which equation below has solutions $x_1 = -6$ and $x_2 = 2$

a) $x^{2} + 4x + 12 = 0$ b) $x^{2} - 4x + 12 = 0$ c) $x^{2} + 2x - 12 = 0$ d) $x^{2} - 2x - 12 = 0$ e) None of the above.

Solution: e

$$S = x_1 + x_2 \Rightarrow S = -6 + 2 \Rightarrow S = -4$$
$$P = x_1 \cdot x_2 \Rightarrow P = (-6) * 2 \Rightarrow P = -12$$

The Professor's formula is:

$$x^{2} - Sx + P = 0$$

$$x^{2} - (-4)x + 12 = 0$$

$$x^{2} + 4x + 12 = 0$$

or $ax^2 + bx + c = a(x - x_1)(x - x_2)$ then for a = 1we have: (x - (-6))(x - 2) = 0(x + 6)(x - 2) = 0 $x^2 - 2x + 6x - 12 = 0$ $x^2 + 4x - 12 = 0$

11. The solutions of $x^2 - 2x - 10 = 0$ are

a) $x_1 = 1 - \sqrt{2}$ and $x_2 = 1 + \sqrt{2}$ b) $x_1 = 1 - \sqrt{5}$ and $x_2 = 1 + \sqrt{5}$ c) $x_1 = 1 - \sqrt{7}$ and $x_2 = 1 + \sqrt{7}$ d) $x_1 = 1 - \sqrt{11}$ and $x_2 = 1 + \sqrt{11}$ e) None of the above.

Solution: d

$$x^{2} - 2x - 10 = 0$$

$$S = \frac{-b}{a} \Rightarrow S = \frac{-(-2)}{1} \Rightarrow S = 2$$

$$P = \frac{c}{a} \Rightarrow P = \frac{(-10)}{1} \Rightarrow P = -10$$

$$\Delta = b^{2} - 4ac$$

$$\Delta = (-2)^{2} - 4(1)(-10)$$

$$\Delta = 4 + 40$$

$$\Delta = 44$$

$$x = \frac{-b \pm \sqrt{\Delta}}{2a} ; a \neq 0$$

$$x = \frac{-(-2) \pm \sqrt{44}}{2(1)}$$

$$x = \frac{2 \pm 2\sqrt{11}}{2}$$

$$x = 1 \pm \sqrt{11}$$

$$x_{1} = 1 - \sqrt{11} \text{ or } x_{2} = 1 + \sqrt{11}$$
Note that $S = x_{1} + x_{2} = 2$ and $P = x_{1} \cdot x_{2} = -10$

12. Given $x^2 - 4x - 1 = 0$, the Sum (S) and the Product (P) of the solutions are

a) S = 4 and P = 1b) S = 1 and P = 4c) S = 4 and P = -1d) S = -4 and P = -1e) None of the above.

Solution: c

$$x^{2} - 4x - 1 = 0 \qquad (a = 1, b = -4, \text{ and } c = -1)$$
$$S = \frac{-b}{a} \Rightarrow S = \frac{-(-4)}{1} \Rightarrow S = 4$$
$$P = \frac{c}{a} \Rightarrow P = \frac{-1}{1} \Rightarrow P = -1$$

13. Let x_1, x_2 , and x_3 be the solutions of the equation $x^3 - 3x^2 + 2x = 0$. Then:

a) $x_1 + x_2 + x_3 = -1$ b) $x_1 + x_2 + x_3 = 0$ c) $x_1 + x_2 + x_3 = 1$ d) $x_1 + x_2 + x_3 = 2$ e) $x_1 + x_2 + x_3 = 3$

Solution: e

 $x^{3} - 3x^{2} + 2x = 0$ $x(x^{2} - 3x + 2) = 0$ $x_{1} = 0 \text{ or } x^{2} - 3x^{2} + 2 = 0 \quad (a = 1, b = -3, \text{ and } c = 2)$

$$S = \frac{-b}{a} \Rightarrow S = \frac{-(-3)}{1} \Rightarrow S = 3$$

$$P = \frac{c}{a} \Rightarrow P = \frac{2}{1} \Rightarrow P = 2$$

Quick test: (

(+1) +2 $x_1 = 1 \text{ and } x_2 = 2$

 $x_1 = 0, x_2 = 1$, and $x_3 = 2$ $x_1 + x_2 + x_3 = 0 + 1 + 2 = 3$ 14. Given the equation $\sqrt{x + 10} = x + 4$, $x \in \mathbb{R}$. The sum of all possible solutions is:

a) -1 b) -2 c) -3 d) -4 e) None of the above.

Solution: a

$$\sqrt{x + 10} = x + 4$$

$$(\sqrt{x + 10})^2 = (x + 4)^2$$

$$x + 10 = x^2 + 8x + 16$$

$$x^2 + 7x + 6 = 0 \quad (a = 1, b = 7, \text{ and } c = 6)$$

$$S = \frac{-b}{a} \Rightarrow S = \frac{-7}{1} \Rightarrow S = -7$$

$$P = \frac{c}{a} \Rightarrow P = \frac{6}{1} \Rightarrow P = 6$$
Quick test:
$$\underbrace{-1 - 6}_{-2 \quad -3}$$

$$x = -1$$
check:
$$\sqrt{-1 + 10} = -1 + 4$$

$$3 = 3 \Rightarrow \text{True}$$

or x = -6check: $\sqrt{-6 + 10} = -6 + 4$ $2 = -2 \rightarrow$ False.

The sum of all possible solutions is - 1.

15. Let x_1 and x_2 be the solutions to $x^2 - 2x - 1 = 0$. Consider the equation:

I. $x_1 + x_2 = -2$ II. $x_1 \cdot x_2 = -1$ III. $x_1^2 + x_2^2 = 6$ IV. $x_1^3 + x_2^3 = 1$

Then:

- a) Only II and III are correct.
- b) Only I and III are correct.
- c) Only II and III are correct.
- d) Only II, III, and IV are correct.
- e) None of the above.

Solution: a

$$x^{2}-2x-1=0$$
 (a = 1, b = -3, and c = -10)

$$x_{1} + x_{2} = \frac{-b}{a} = \frac{-(-2)}{1} = 2$$

$$x_{1} \cdot x_{2} = \frac{c}{a} = \frac{-1}{1} = -1$$

$$(x_{1} + x_{2})^{2} = x_{1}^{2} + 2x_{1}x_{2} + x_{2}^{2}$$

$$x_{1}^{2} + x_{2}^{2} = (x_{1} + x_{2})^{2} - 2x_{1}x_{2}$$

$$x_{1}^{2} + x_{2}^{2} = 2^{2} - 2(-1)$$

$$x_{1}^{2} + x_{2}^{2} = 6$$

$$(x_{1} + x_{2})^{3} = x_{1}^{3} + 3x_{1}^{2} \cdot x_{2} + 3x_{1} \cdot x_{2}^{2} + x_{2}^{3}$$

$$x_{1}^{3} + x_{2}^{3} = (x_{1} + x_{2})^{3} - 3x_{1}^{2} \cdot x_{2} - 3x_{1} \cdot x_{2}^{2}$$

$$x_{1}^{3} + x_{2}^{3} = (x_{1} + x_{2})^{3} - 3x_{1}x_{2}(x_{1} + x_{2}^{2})$$

$$x_{1}^{3} + x_{2}^{3} = 2^{3} - 3(-1)(2)$$

$$x_{1}^{3} + x_{2}^{3} = 14$$

Thus, only II and III are correct.

16. Solve: $6x - 5 \ge 3x + 4$. The solution is:

a) $S = \{x \in \mathbb{R} \mid x \ge 3\}$ b) $S = \{x \in \mathbb{R} \mid x < 3\}$ c) $S = \{x \in \mathbb{R} \mid x \ge 4\}$ d) $S = \{x \in \mathbb{R} \mid x < 4\}$ e) None of the above.

Solution: a

 $6x - 5 \ge 3x + 4$ $6x - 3x \ge 4 + 5$ $3x \ge 9$ $x \ge 3$ Thus, $S = \{x \in \mathbb{R} \mid x \ge 3\}.$

17. Solve:
$$\frac{x-3}{x-2} > 0$$
. The solution is:

a) $S = \{x \in \mathbb{R} | x < -2 \text{ or } x > 3\}$ b) $S = \{x \in \mathbb{R} | x \le -2 \text{ or } x \ge 3\}$ c) $S = \{x \in \mathbb{R} | 2 < x < 3\}$ d) $S = \{x \in \mathbb{R} | 2 \le x \le 3\}$ e) None of the above.

Solution: e

$$x - 3 = \{x \in \mathbb{R} \mid x < 2 \text{ or } x > 3\}$$

Thus, none of the above.

18. Solve:
$$\frac{x^2 + 3x + 2}{x} > 0$$
. The solution is:

a) $S = \{x \in \mathbb{R} \mid x < -2 \text{ or } -1 < x < 0\}$ b) $S = \{x \in \mathbb{R} \mid -2 < x < -1 \text{ or } x > 0\}$ c) $S = \{x \in \mathbb{R} \mid x \le -2 \text{ or } -1 \le x < 0\}$ d) $S = \{x \in \mathbb{R} \mid -2 \le x \le -1 \text{ or } x > 0\}$ e) None of the above.

Solution: b

$$\frac{x^2 + 3x + 2}{x} > 0$$

$$x^2 + 3x + 2 = 0 \quad (a = 1, b = 3, \text{ and } c = 2)$$

$$S = \frac{-b}{a} \Rightarrow S = \frac{-(3)}{1} \Rightarrow S = -3$$

$$P = \frac{c}{a} \Rightarrow P = \frac{2}{1} \Rightarrow P = 2$$
Quick test:
$$\underbrace{-1 \quad -2}$$
Then, $x^2 + 3x + 2 = (x + 1)(x + 2)$
Then, $\frac{(x + 1)(x + 2)}{x} > 0$

$$\underbrace{-1 \quad -2}_{x} = -1 \quad 0 \quad 1$$

Thus, $S = \{x \in \mathbb{R} \mid -2 < x < -1 \text{ or } x > 0\}.$

19. Solve: $x^2 + x + 2 \le 0$. The solution is:

a) $S = \{x \in \mathbb{R} \mid x > 0\}$ b) $S = \{x \in \mathbb{R} \mid x < 0\}$ c) $S = \{x \in \mathbb{R} \mid x < 0\}$ d) $S = \mathbb{R}$ e) $S = \emptyset$ (There is no solution).

Solution: e

 $x^{2} + x + 2 \le 0$ $x^{2} + x + 2 = 0 \quad (a = 1, b = 1, \text{ and } c = 2)$ $\Delta = b^{2} - 4ac$ $\Delta = (1)^{2} - 4(1)(2)$ $\Delta = 1 - 8$

$$\Delta = -7$$

Thus, $S = \emptyset$.

20. Solve: $\frac{x(x+2)}{(x+2)} < 0$. The solution is:

a) $S = \{x \in \mathbb{R} \mid x > 0\}$ b) $S = \{x \in \mathbb{R} \mid 0 < x < 2\}$ c) $S = \{x \in \mathbb{R} \mid x \le 0 \text{ and } x \ne -2\}$ d) $S = \{x \in \mathbb{R} \mid x < -2 \text{ and } -2 < x < 0\}$ e) None of the above.

Solution: d

 $\frac{x(x+2)}{(x+2)} < 0$ Existence Condition: $x + 2 \neq 0 \Rightarrow x \neq -2$ If $x \neq -2$, then $\frac{x(x+2)}{(x+2)} = x < 0$

Thus, $S = \{x \in \mathbb{R} \mid x < -2 \text{ and } -2 < x < 0\}$

MathVantage				Algebra I - Ex	xam 2	Exam Number: 013			
					PA	RT 2: SOLUT	IONS	Consulting	
Name:_							Age:	Id:	Course:
Multiple-Choice Answers					nswe	rs		Extra Ques	stions
	Questions	Α	в	с	D	Е	21	1. Solve: $x^4 + 9x^2 - $	$-10 = 0$; $x \in \mathbb{R}$.
	1								
	2							Solution: $S = \{-1\}$, 1}
	3						У	$= x^2$	
	4						<i>y</i> ²	$a^2 + 9y - 10 = 0$ (-b -9	a = 1, b = -15, and $c = -16$)
	5						S	$=$ ${a} \Rightarrow S = {1}$	$\rightarrow S = 9$
	6							<i>c</i> –10	
	7						P	$= \frac{1}{a} \Rightarrow P = \frac{1}{1}$	$r \Rightarrow P = -10$
	8								
	9							(+1 - 10)	
	10						Q	uick test:	
	11							+2 -3	
	12						У	= 1 or y	v = -10
	13						x^{-}	$x = \pm 1$ $x = \pm 1$	$x \in \mathbb{R}$
	14								
	15						T	hus, $S = \{-1, 1\}$	
	16						22	2. Solve: $\frac{9}{-} + x < -$	-6 ; $x \in \mathbb{R}$.
	17							<i>x</i>	
	18							Solution:	
	19						$\frac{9}{r}$	$x + x + 6 \le 0$	
	20						9	$+x^2+6x < 0$	
	Let thi	is sec	tion	in bl	ank		() Si	$\frac{x}{x+3)^2} \le 0$ ince $(x+3)^2 \ge 0.7$	`hen,
			T	Points		/ax			

	Points	Мах
Multiple Choice		100
Extra Points		25
Consulting		10
Age Points		25
Total Performance		160
Grade		Α

Case 1: $x + 3 = 0 \Rightarrow x = -3$ OK Check $\frac{9}{-3} + (-3) \le -6 \Rightarrow -3 - 3 \le -6 \Rightarrow$ $-6 \le -6$ Case 2: $(x + 3)^2 > 0$ $\frac{(x + 3)^2}{x} \le 0 \Rightarrow x < 0$

Thus, $S = \{x \in \mathbb{R} \mid x < 0 \text{ or } x = -3\}$

23. Let x_1 and x_2 be the solution of the equation $x^2 - 2x - 6 = 0.$ Calculate $\frac{x_1}{x_2} + \frac{x_2}{x_1} = \frac{x_1^2 + x_2^2}{x_1 x_2}$. Solution: $\frac{x_1}{x_2} + \frac{x_2}{x_1} = -\frac{8}{3}$ $(x_1 + x_2)^2 = x_1^2 + 2x_1x_2 + x_2^2$ $x_1^2 + x_2^2 = (x_1 + x_2)^2 - 2x_1x_2$ Then, $\frac{x_1}{x_2} + \frac{x_2}{x_1} = \frac{(x_1 + x_2)^2 - 2x_1x_2}{x_1x_2}$ $x_1 + x_2 = \frac{-b}{a} \Rightarrow x_1 + x_2 = \frac{-(-2)}{1} = 2$ $x_1 \cdot x_2 = \frac{c}{a} \Rightarrow x_1 \cdot x_2 = \frac{-6}{1} = -6$ Thus, $\frac{x_1}{x_2} + \frac{x_2}{x_1} = \frac{2^2 - 2(-6)}{(-6)}$ $\frac{x_1}{x_2} + \frac{x_2}{x_1} = \frac{4+12}{-6}$ $\frac{x_1}{x_2} + \frac{x_2}{x_1} = -\frac{8}{3}$ 24. Solve: $\frac{1-x}{2} = \frac{x-5}{3} + 1$; $x \in \mathbb{R}$.

Solution: $S = \{\frac{7}{5}\}$ $\frac{1-x}{2} = \frac{x-5}{3} + 1$

Multiply all of the equation by 6.

3(1 - x) = 2(x - 5) + 6 3 - 3x = 2x - 10 + 6 -3x - 2x = -4 - 3 -5x = -7 $x = \frac{7}{5}$ 25. Find the value of the integral below. If you're having trouble solving the integral, draw a circle as your answer to receive full credit.

$$I = \int_0^1 x \, dx$$

Solution: $\frac{1}{2}$
$$I = \int_0^1 x \, dx = \left[\frac{x^2}{2}\right]_0^1 = \frac{1^2}{2} - \frac{0^2}{2} = \frac{1}{2}$$

or

